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The ability to intercept uncooperative targets is key to many diverse
flight behaviors, from courtship to predation. Previous research has
looked for simple geometric rules describing the attack trajectories
of animals, but the underlying feedback laws have remained
obscure. Here, we use GPS loggers and onboard video cameras to
study peregrine falcons, Falco peregrinus, attacking stationary tar-
gets, maneuvering targets, and live prey. We show that the terminal
attack trajectories of peregrines are not described by any simple
geometric rule as previously claimed, and instead use system iden-
tification techniques to fit a phenomenological model of the dynam-
ical system generating the observed trajectories. We find that these
trajectories are best—and exceedingly well—modeled by the pro-
portional navigation (PN) guidance law used by most guided mis-
siles. Under this guidance law, turning is commanded at a rate
proportional to the angular rate of the line-of-sight between the
attacker and its target, with a constant of proportionality (i.e., feed-
back gain) called the navigation constant (N). Whereas most guided
missiles use navigation constants falling on the interval 3 ≤ N ≤ 5,
peregrine attack trajectories are best fitted by lower navigation
constants (median N < 3). This lower feedback gain is appropriate
at the lower flight speed of a biological system, given its presum-
ably higher error and longer delay. This same guidance law could
find use in small visually guided drones designed to remove other
drones from protected airspace.

peregrine falcon | pursuit | guidance law | system identification |
proportional navigation

The success of any aerial predator hinges on its ability to steer
a collision course to its prey, which previous work has ex-

plored by looking for simple rules describing the geometry of an
attack (1–11). For example, many predators are said to hold the
geographic direction of their target constant on approach. This
geometry guarantees interception, but describes pattern, not
process, being only the idealized outcome of some underlying
guidance law by which sensory feedback is used to command body
accelerations (12). Guidance laws have previously been fitted to
the flight trajectories of chasing flies (13–16), where the picture is
complicated by the fact that the pursuer is not necessarily trying to
intercept the object of its territorial or courtship behavior (see also
refs. 17–19). Guidance laws have also been fitted to the flight
trajectories of pigeons avoiding obstacles (20), modeled as a
piecewise target-aiming behavior at gaps identified post hoc from
the observed trajectory. These examples contrast with the case of
aerial predation, for which the objective of the behavior is clear,
but for which the underlying guidance laws remain obscure. Here,
we analyze the aerial attack behaviors of peregrines, Falco pere-
grinus, dynamically, using GPS data supported by onboard video to
identify a simple guidance law capable of generating the trajec-
tories observed during the terminal phase of an attack.
Previous studies have described the target-oriented behaviors of

animals using three simple geometric rules, each defined by the
constancy of one of two angles characterizing the 2D geometry of
a chase: the line-of-sight angle (λ), defined as the compass bearing

of the line-of-sight from pursuer to target; and the deviation angle
(δ) between the line-of-sight and the pursuer’s velocity vector.
Under a first geometric rule (Fig. 1A), the pursuer flies directly at
its target at all times (t), producing a pure pursuit course defined
by the rule δ(t) = 0. Pure pursuit has been described in hawks
attacking stationary targets (10), flies chasing mates (13–16), fish
catching sinking food (21), beetles running after targets (22, 23),
and bees landing on a moving platform (24). Under a second
geometric rule (Fig. 1B), the pursuer directs its velocity at a
nonzero lead angle α ahead of the line-of-sight, producing a de-
viated pursuit course defined by the rule δ(t) = α. Deviated pursuit
has been hypothesized in falcons on the basis of their visual
anatomy (7, 8), but behavioral evidence is lacking (9). Under a
third geometric rule (Fig. 1C), seen in dragonflies (1–5), robber
flies (6), falcons (9), hawks (10), and bats (11), the pursuer keeps
its target on a constant compass bearing. This results in a parallel
navigation course defined by the rule λ(t) = λ(0), and leads in-
cidentally to a form of motion camouflage, because the pursuer
appears stationary against a distant background (2, 25, 26) [also
called constant absolute target direction (9–11) or constant bear-
ing angle (6)]. Missile engineers designed guidance laws to im-
plement these geometric rules decades ago (12), but it is not yet
known how they are implemented by aerial predators.
Past research has tried to relate the curved geometry of raptor

attack trajectories to the constraints imposed by their visual
anatomy (7–9). Birds vary considerably in the extent of their eye
movements, but these are limited in falcons, which have two acute
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zones in each eye: a forward-facing shallow fovea and a laterally
directed deep fovea (27). The former is used to inspect nearby
targets, but raptors typically look laterally at distant targets,
leading Tucker (7) to propose that the deep fovea would be used
to target aerial prey. Tucker further proposed that a falcon would
hold its head symmetrically for streamlining in a stoop, leading to
the hypothesis that it would naturally fly a deviated pursuit course
with a lead angle α ≈ 45°, equal to the azimuthal angle of the deep
fovea (7). Under this hypothesis, the geometry of a falcon’s attack
trajectory emerges from the kinematic constraints imposed by its
anatomy and aerodynamics, rather than from any underlying
feedback law. Recent observational studies using head-mounted
video cameras (9) have cast doubt on the supposition that the
deep fovea is used to target aerial prey, as the target’s inferred
position on the retina is nearer to that of the shallow fovea (9).
Furthermore, it has been suggested that the apparent target mo-
tion in these videos is more consistent with the use of parallel
navigation than deviated pursuit (9). It therefore appears that the
curved attack trajectories of falcons cannot be explained away as
an emergent property of their visual anatomy. On the contrary, it
may only be possible to understand the functional significance of
this visual anatomy given a suitable model of their guidance.
The guidance systems of most modern missiles use a guidance

law called proportional navigation (PN), in which turning is
commanded at a rate _γ proportional to the rotation rate of the
line-of-sight (i.e., the line-of-sight rate, _λ), such that

_γðtÞ=N _λðtÞ [1]

where N is termed the navigation constant and falls on the interval
3 ≤ N ≤ 5 in missiles (12). (Note that PN refers specifically to the
guidance law stated in Eq. 1 and is distinct from proportional con-
trol.) Changes in the line-of-sight can be produced by motion of
either the target or attacker, so PN commands turning toward the
target even when it is stationary, except in the degenerate case that

the attacker is already flying directly at its target. Moreover, the
same guidance law can be generalized to the 3D case and is capable
of producing any of the three attack geometries described above (SI
Appendix). When N is high, the commanded turn rate nullifies the
line-of-sight rate, so that λ(t) ≈ λ(0), producing a parallel navigation
course (Fig. 1C). When N = 1, the commanded turn rate matches
the line-of-sight rate, so that δ(t) = δ(0), producing a pure or de-
viated pursuit course (Fig. 1 A and B), according to the initial
conditions on δ(0). While there are plausible attack geometries that
cannot be produced by PN, the same guidance law produces a
continuum of other trajectories at intermediate N (12). Other guid-
ance laws are possible. Most are simply PN variants (12), but a
different and direct way of implementing pursuit would be to
command turning in proportion to the deviation angle δ, with
_γ(t) = −Kδ(t), where K is a positive constant. This proportional
pursuit (PP) guidance law drives the deviation angle to zero, such
that δ(t) ≈ 0, but is easily modified to implement deviated pursuit
(SI Appendix, Eq. S4). PP guidance differs fundamentally from PN
at N = 1, which produces a pursuit course by holding δ unchanging,
rather than by driving δ to any particular value. PP guidance has
been used successfully to model chases in flies (13–16) and has
also found use in some early guided missiles, but is not widely
used today. This is not surprising given that PN can be shown to be
optimal against nonmaneuvering targets and near-optimal against
maneuvering ones (12). The simplicity, efficacy, and generality of
PN make it an excellent candidate for explaining how animals
intercept stationary and maneuvering targets (3, 4, 6, 12, 28), but
this has not been shown empirically.

Peregrines Use a Diverse Range of Attack Behaviors
We challenged n = 8 captive peregrines to attack a food lure
resembling a winged prey item, which was thrown upward by the
falconer (stationary targets: 26 flights for n = 3 birds in 2012/13;
Movie S1) or towed spinning through the air by a small remotely
piloted aircraft (maneuvering targets: 35 flights for n = 5 birds in
2014/16; Movies S2 and S3). We did not encourage hunting, but
our video data revealed 12 opportunistic hunts and 2 territorial
interactions with live targets (Figs. 2 and 3 and Movies S4–S6).
No live hunt ended in a kill, but this is not necessarily surprising,
as reported success rates for wild peregrines range upward from
8% (29), and the binomial probability of experiencing a run of
12 unsuccessful hunts at an 8% success rate is P = 0.37. Pere-
grines are known for their high-speed, gravity-assisted stoops, but
many or most attacks over open habitats involve level chases or
low-altitude swoops at sitting or swimming prey (29–31). Our
birds used a similarly diverse range of behaviors: Only 4 (33%) of
the 12 live hunts began with a stoop; the other 8 (67%) began as
level chases, including 1 (8%) from a perch. All 35 flights at
maneuvering targets began as level chases, and of the 26 flights
at stationary targets, 9 (35%) began with a gravity-assisted stoop
and 5 (19%) with a low-altitude swoop; the other 12 (46%) be-
gan as level chases, including 3 (12%) from a perch. If the initial
attack was unsuccessful, then this was usually followed by a series
of swoops (Fig. 1D), as is also typical of natural hunting behavior.

Peregrine Terminal Attack Trajectories Are Not Described by
Any Single Geometric Rule
The birds often made more than one attack pass before cap-
turing their target, and we treated these separately in the analysis
below. In total, we obtained high-quality GPS data from
33 passes at stationary targets and 22 passes at maneuvering
targets (SI Appendix). These include five passes at a mallard,
Anas platyrhynchos, that landed to take cover (Fig. 1E), allowing
us to identify its position as for other stationary targets. The
deviation angle δ varied continuously during these attacks (Fig.
1E and SI Appendix, Fig. S1), except in a few degenerate cases
involving straight flight at a stationary target, for which δ(t) ≈ 0,
as in pure pursuit. The GPS data showed that the line-of-sight
angle λ also varied continuously, but became more constant on
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Fig. 1. Three geometric rules classically used to describe aerial attack be-
haviors (A–C), compared with actual GPS track for live attack on a mallard (D
and E). Straight lines mark the line-of-sight from attacker to target at reg-
ular time intervals. (A) Pure pursuit. (B) Deviated pursuit. (C) Parallel navi-
gation. (D) Attack on mallard comprising aerial chase followed by four low-
altitude swoops (colored points). (E) Geometric analysis of four swoops at
mallard. Note the constancy of the deviation angle (δ) in A and B and the
constancy of the line-of-sight angle (λ) in C; neither the deviation angle nor
the line-of-sight angle was held constant in the attacks on the mallard (E), so
the actual behavior is not described by any simple geometric rule.
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final approach (Fig. 1E and SI Appendix, Fig. S1). This was con-
firmed by the videos of attacks on live targets, which showed the
line-of-sight becoming steady to within ±3° over the last 1–2 s of
each attack (Fig. 2). The geometry of our peregrines’ attack be-
haviors was therefore fundamentally different from the deviated
pursuit strategy proposed by Tucker et al. (7, 8) and more complex
than the parallel navigation strategy proposed by Kane et al. (9,
10). In summary, there is no evidence that peregrine attack tra-
jectories are described by any single geometric rule (cf. refs. 7–10),
but they are consistent with the use of a guidance law that tends to
bring the attacker onto a parallel navigation course on final ap-
proach. PN is the obvious candidate, which we test formally below.

Peregrine Terminal Attack Trajectories Are Well Modeled by
a PN Guidance Law
Our peregrines flew an almost planar attack trajectory against
stationary targets, but only did so for maneuvering targets when
engaged in a level chase. Hence, as most of the attack trajectories
were quite shallow, we first undertook a 2D system identification
analysis of the horizontal components of the trajectories, before
undertaking a 3D analysis of any passes with an altitudinal
range ≥10 m over the section simulated in 2D. For each attack
pass, we simulated the trajectory that would have emerged under
PN or PP guidance at the best-fitting value of the guidance con-
stant N or K in nominally lag-free conditions (SI Appendix). We
ran these simulations given knowledge of the initial position and
velocity of the attacker, the time history of the attacker’s ground-
speed, and the time history of the target’s position. We used the

guidance law to simulate all of the changes in the attacker’s flight
direction, but forced the attacker’s speed to match what we had
measured empirically. Matching the speed in this way is essential
to ensuring proper determination of the line-of-sight rate and
ensures that any prediction error is wholly attributable to error in
the simulated time history of the attacker’s turning. We assumed
that the actual acceleration of the attacker in our simulations was
the same as the commanded acceleration (i.e., we assumed that the
attacker could meet its acceleration demand), which is reasonable
because any guidance model that fits the data must by definition be
feasible within the actual biomechanical constraints on the system.
We identified the best-fitting values of N and K separately for

each attack pass by minimizing the overall prediction error, de-
fined as the mean absolute distance between corresponding
sample points on the simulated and measured trajectories. This
system identification approach accommodates variability in the
guidance parameters N and K, which could be expected under
optimal guidance (see below), but risks overparameterization. It
is important to note, therefore, that our subsequent statistical
inferences were based on: (i) a contrastive test of the fit of two
alternative guidance laws, each with one fitted guidance pa-
rameter per pass; and (ii) an analysis of the population proper-
ties of the fitted guidance parameters, which were expected to
take values within a particular range (see below). Since there was
no prior way of knowing when an attacker first initiated its
target-oriented behavior, we ran simulations beginning from all
possible start times ≥2.0 s before intercept and reported the
longest simulation for which the mean prediction error was less
than some predetermined threshold as a percentage of the total
distance flown (Fig. 3). In other words, we fitted the terminal
phase of each attack pass, starting the fit from as far back as
would meet the specified error tolerance. Simulations of the
same trajectory begun closer to the point of intercept usually had
a lower mean prediction error. The length of the fit was there-
fore the key metric for assessing how well a given model de-
scribed the data, both in an absolute sense and relative to any
alternative. However, because the guidance laws that we com-
pared were only used to predict the turning behavior of the at-
tacker, it follows that a fitted trajectory is only informative if it
involves a substantial amount of turning: Straight trajectories can
be fitted well under either guidance law, so are not informative.
The PN simulations modeled a significantly higher proportion

of passes at 1.0% error tolerance than did the PP simulations
(46 vs. 35 of 55 passes; exact McNemar’s test: two-tailed P = 0.001;
SI Appendix, Table S1). Moreover, for those passes that could be
modeled successfully by both guidance laws, the PN simulations
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Fig. 2. Video sequences from cameras worn dorsally by peregrines chasing
live targets (magenta): corvids Corvus spp. (A and B; Movies S5 and S6) and
mallard (C; Movie S4). All frames have been uniformly darkened apart from
within a circular mask subtending 6° (inner circle) or 10° (outer ring). Each
mask is centered on a consistently identifiable reference point on the hori-
zon or at the intersection of a pair of circular arcs (white lines) centered on
two such points. This ensures that the mask is located on a constant compass
bearing, regardless of how the attacker behaves or how the camera moves
(SI Appendix). Any drift in the line of sight is therefore measured by the
target’s movement with respect to the mask. Because the target (magenta)
remains within the 6° diameter of the inner circle of the mask, it follows that
the line of sight is held steady to within ±3° over the last 1–2 s of each attack.

N1.0% = 2.4 K1.0% = 1.4 s-1

PN PP

Fig. 3. Representative GPS track for peregrine (blue points) attacking sta-
tionary target (magenta points), overlain with best-fitting 2D simulations un-
der PN (blue line) and PP (green line). Simulations start from the earliest point
for which prediction error is <1.0% of total distance flown; N1.0% and K1.0%

denote the best-fitting values of the respective guidance constants at this error
tolerance. Dashed lines indicate sensitivity of the simulation by increasing
(light gray) or decreasing (dark gray) the fitted value of the guidance
constant ±10%. In most cases, the PN simulation was highly sensitive to the
value of N (sensitivity ratio for this simulation: 42.8), which should therefore
have been reliably estimated by our method. The PP simulations did not fit
much of the data well and were often quite insensitive to the value of K (see SI
Appendix, Table S2 for results for all passes). Grid lines are at 10-m spacing.
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fitted a significantly longer duration of flight (median duration:
4.9 s; first, third quartiles: 3.3, 8.8 s) than did the PP simulations
(sign test on 27 untied differences: two-tailed P = 0.0003). We
therefore concluded that PN was much the better supported of the
two guidance laws we tested (see also Fig. 3) and present only the
results of the PN simulations hereon. In aggregate, our PN sim-
ulations modeled >4.2 km of flight at 1.0% error tolerance (SI
Appendix, Table S1), fitting long sections of flight against both
stationary (median simulation length: 47 m; first, third quartiles:
31, 71 m) and maneuvering (median simulation length: 114 m;
first, third quartiles: 45, 200 m) targets. Although our PN simu-
lations could not model all of the attack passes at 1.0% error
tolerance, this reflects the stringency of the error threshold chosen
in advance of our analysis, coupled with our requirement to
model ≥2 s of flight.
A few of the attacks involved long sections of nearly straight flight

toward the target, but while these were consistent with the use of
PN, the guidance dynamics were not strongly excited in these de-
generate cases, making parameter estimation unreliable (SI Ap-
pendix, Table S2). We therefore focused our reporting on the more
informative subset of attacks involving the most turning, which we
assessed by ranking the trajectories according to aspect ratio. Fig. 4
presents the 15 trajectories involving the most turning (see SI Ap-
pendix, Figs. S2 and S3 for the rest), from which it is clear that PN
guidance is capable of generating most of the turning behavior that

we observed. For example, the paths of increasing radius that the
peregrines followed toward stationary targets all belong to the
family of curves generated naturally by the dynamics of PN guid-
ance (Fig. 4 F–O). Moreover, whereas the three geometric rules
only make sense when an attacker is already closing range on its
target, PN can also generate the turning behavior observed when an
attack is started with the attacker flying away from its target (Fig. 4
I–M). PN guidance can even generate a hairpin turn that one of the
peregrines made after missing a maneuvering target (Fig. 4A). Our
simulations performed comparably well in 3D at an equivalent 1.2%
error tolerance for those attacks involving substantial changes in
altitude (Fig. 5), accurately describing the curved descent of the
longest gravity-assisted stoop that we observed (Fig. 5B). No geo-
metric rule could possibly describe this breadth of behavior, and
indeed the decreasing radius of the spiraling flight path predicted
under Tucker’s model of deviated pursuit in falcons (7) is opposite
to the increasing radius of the curves that we observed (Fig. 4).

Sensitivity of Method and Robustness of Simulations
We verified the sensitivity of our system identification analysis by
computing the percentage change in the mean absolute distance
between the simulated and measured trajectories in response to
a ±10% change in their fitted values of N (Fig. 3), quantifying the
sensitivity as the ratio of these percentage changes (sensitivity
ratios in SI Appendix, Table S2). The match between the simulated
and measured trajectories was highly sensitive to the value of N
(median sensitivity ratio: 3.5; upper, lower quartiles: 1.4, 28.5), so
for a given start point, the best-fitting value of N was usually well
defined (Fig. 3). The best-fitting value of N is itself sensitive to the
initial conditions, however, and so depends on the selected start
point of the simulation. The start points of our simulations were
determined by our choice of error tolerance, but the population
properties of the fitted values of the navigation constants were
robust to this: Values of N fitted to shorter lengths of flight at
0.5% error tolerance (median N0.5%: 2.5; first, third quartiles: 1.5,
3.9) did not differ systematically (sign test on 22 untied differ-
ences: P = 0.83) from values of N fitted to longer lengths of flight
at 1.0% error tolerance (median N1.0%: 2.6; first, third quartiles:
1.5, 3.2) (Fig. 4 and SI Appendix, Table S2). This presumably re-
flects the fact that the terminal phase of an attack is short enough
for the guidance dynamics to be treated as time-invariant, even if
parametric variation in the guidance dynamics becomes apparent
over the longer time intervals between passes.
The preceding simulations were fitted assuming nominally lag-free

guidance, notwithstanding the timing uncertainty of ±0.1 s implicit in
aligning our 5-Hz GPS measurements to the point of capture. To
verify the robustness of our simulations to this uncertainty, which
precludes reliable estimation of the inevitable sensorimotor delay,
we reran the PN simulations after lagging the line-of-sight rate fed
back to command turning by a delay equivalent to one GPS sample
interval. Adding this explicit 0.2-s delay worsened the fit over the
same sections of flight that we had fitted at 1.0% error tolerance
without delay (median prediction error: 1.1%; first, third quartiles:
0.9%, 1.6%; sign test on 46 untied differences: P < 0.001; SI Ap-
pendix, Table S3) and systematically lowered the fitted values of N
(median N with delay: 2.3; first, third quartiles: 1.4, 3.4; sign test on
46 untied differences: P = 0.001), although the effect size was small
(median N of 2.3 vs. 2.6, with and without delay). This was not
necessarily surprising, because this simple sensitivity analysis did not
amount to modeling the effects of sensorimotor delay, which is likely
to be shorter than the 0.2-s delay introduced here to verify the ro-
bustness of our conclusions to the ±0.1-s timing uncertainty in our
data. Nevertheless, in the absence of data with the time resolution
needed to accurately identify any sensorimotor delay, our simula-
tions assuming nominally lag-free PN guidance provided the best
available phenomenological model of the data.

Optimization of the Navigation Constant
Strikingly, approximately two-thirds of the fitted values of N fell
below the interval 3≤N ≤ 5 that is typical of guided missiles (SI
Appendix, Table S1). Lower navigation constants are avoided in
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Fig. 4. GPS tracks for peregrines (blue points) attacking maneuvering (A–E) or
stationary (F–O) targets (magenta points), overlain with best-fitting 2D simula-
tions under PN guidance (blue lines). Duck icons indicate live targets (cf. Fig. 1E).
Simulations start from the earliest point for which the prediction error is <0.5%
(dark blue) or <1.0% (light blue) of the distance flown; N0.5% and N1.0% denote
the best-fitting values of N at each error tolerance. n.s., no simulation. The
15 trajectories involving the most turning are plotted here; see SI Appendix, Figs.
S2 and S3 for the 31 other trajectories fitted at 1.0% error tolerance. Starred
trajectories are simulated in 3D in Fig. 5. Grid lines are at 10-m spacing.
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missile applications, because the acceleration commanded under
PN increases without limit atN < 2, as the attacker turns ever more
tightly in to its target instead of straightening up on final approach
(12). The equations that lead to this conclusion are quite involved,
but suffice it to say that this textbook result is a fundamental
property of the dynamics of PN, such that we might reasonably
have expected our peregrines to avoid operating at N < 2. In
practice, their comparatively low flight speed meant that the cen-
tripetal acceleration demanded in our simulations did not exceed
gravitational acceleration by more than a factor of 2.5 until the
peregrine was already within striking distance of its target. Con-
sequently, the high terminal acceleration demand that can arise at
N < 2 would never have been limiting for our peregrines. Free of
this constraint, it makes good sense that peregrines should operate
with lower values of N than guided missiles, because PN guidance
amplifies errors in line-of-sight rate estimation in proportion to N.
The dynamics of PN guidance are highly nonlinear, presenting

formidable difficulties analytically. Nevertheless, under linear-
ized lag-free conditions, it can be shown that PN with an effective
navigation constant N′ = 3 is the global optimum for intercepting
nonmaneuvering targets, in the sense of being the guidance law
which—in a perfect intercept—minimizes the control effort
measured by the time integral of the squared acceleration
command (12). The effective navigation constant is defined as
N′ = N(vcosδ)/vc, where vc is the speed at which the attacker
closes range on its target. Hence, since vc = vcosδ by definition
when the target is stationary, it follows that PN guidance with
N = 3 will produce the most efficient trajectory possible in terms
of the control effort needed to hit a stationary target. This the-
oretical optimum is remarkably close to the median value of
N1.0% = 2.6 that we found empirically for attacks on stationary
targets. Against maneuvering targets, the optimal guidance

command becomes augmented by a term related to the target’s
acceleration (12), but as the optimal guidance law in this case is
effectively just an augmented form of PN at N′ = 3, it is striking
that we also found a median value of N1.0% = 2.6 for attacks
against maneuvering targets. Given that N varied substantially
between flights (median absolute deviation of N1.0% from the
median: 38% of median), and given that its variation was too
great to be attributable to fitting error (median sensitivity ratio of
fits: 3.5), it is reasonable to ask whether N varied systematically
between or within flights. There are good reasons for expecting
this. For example, although a fixed navigation constant of N =
3 is expected to minimize the control effort for attacks on sta-
tionary targets, other performance objectives like minimizing the
turn radius or time to intercept could have affected the outcome
of the optimization differently, according to the motivation of
the attacker or degree of clutter in the environment. Moreover,
for attacks on maneuvering targets, the optimal value of N is
likely to be time-varying in the nonlinear case, and even a flight
trajectory generated by the optimal augmented PN law at N′ =
3 would have appeared to have a time-varying value of N when
approximated by a trajectory generated by pure PN.
After removing four robustly identified outliers falling >2.5

median absolute deviations from the median (32), the 42 remaining
values of N1.0% were close to normally distributed (Shapiro–Wilk
test:W = 0.96; P = 0.13), so we used an analysis of covariance to test
for possible sources of systematic variation in N between passes,
treating different data points from the same individual as if they
were independent. We found no evidence of any effect of target
type [serving as a proxy for target acceleration: F(1,39) = 0.80; P =
0.38] or mean groundspeed [serving as a proxy for motivation level:
F(1,39) = 0.07; P = 0.79] on the fitted values of N1.0%. Testing for
systematic variation in N within a trajectory risked overfitting, so to
test for one mechanistically plausible (albeit functionally sub-
optimal) pattern of variation within flights, we rewrote the PN
guidance law (Eq. 1) in terms of the centripetal acceleration (a),
such that a(t) = Nv(t)_λ(t), and tried fitting the trajectories while
holding the gain Nv(t), rather than N, constant. This generates a
different trajectory if the attacker’s speed v varies through an attack,
and amounts to assuming that the attacker controls its centripetal
acceleration (and hence normal aerodynamic force) in proportion
to the line-of-sight rate. For 16 of the 55 attack passes, our simu-
lations holding Nv(t) constant fitted a greater duration of flight at
1.0% error tolerance than did the simulations holding N constant
(cf. 14 cases with the opposite outcome), but this result was not
significant (sign test on 30 untied differences: P = 0.86), and the
simulations holding N constant fitted a greater length of flight in
aggregate. It would therefore be premature to conclude that pere-
grines effectively optimize N according to their target’s or their own
behavior, but it is tempting to suppose that they might.
In summary, the median fitted values of N1.0% fell within just

15% of the optima expected under the classical linear–quadratic
formulation of the optimal guidance problem. While the fitted
values of N were mostly lower than those of guided missiles, they
make sense for a biological system flying at comparatively low
speeds, for which even the high terminal accelerations associated
with N < 2 remain tolerable until the attacker is already within
striking range of its target. Furthermore, it is reasonable to expect
that a biological system will have noisier line-of-sight rate estimation
than an engineered system, in which case a lower value of N would
be expected to be beneficial on the basis that PN propagates errors
in line-of-sight rate estimation approximately in proportion to N
(12). Finally, biological systems usually have longer time constants
than engineered systems, and the conditions guaranteeing finite-
time stability of PN in the presence of delay (12) imply that a
longer time constant can be accommodated by operating at a lower
gain (see also ref. 33). Hence, while the variation in the fitted values
of N remains to be explained, their population properties make
excellent functional sense.
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N1.2%= 0.8

B
N1.2%= 1.4

D*

C*
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N1.2%= 0.4

N1.2%= 1.1

F
G

Fig. 5. GPS tracks for peregrines (blue points) attacking maneuvering (A–E
and G) or stationary (F) targets (magenta points), overlain with best-fitting
3D simulations under PN guidance (blue lines). Vertical tails end at the
horizontal plane in which interception occurs, as an aid to visualization (note
that the bird in F was flying uphill). Simulations start from the earliest point
for which the mean absolute distance between the simulated and measured
trajectories was <1.2% (light blue) of the total distance flown; N1.2% denotes
the corresponding best-fitting value of N. Starred trajectories are simulated
in 3D in Fig. 4 (same lettering). Grid lines are at 10-m spacing.
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Conclusions
Previous research has looked for simple geometric rules describing
the aerial attack behaviors of animals (1–11). The attack trajectories
of peregrines are not described by any single geometric rule (cf. refs.
7–9), but they are well described by a single form of guidance law—
PN—that is capable of producing any of the idealized attack ge-
ometries described in nature given appropriate tuning of its navi-
gation constant (Fig. 1 A–C). This same mechanism, therefore, has
the potential to unify our understanding of pursuit behaviors across
species—whether in the air, the water, or on the ground. Although
peregrines are the first aerial predators for which a guidance law has
been formally identified, the fact that other animals such as drag-
onflies and robber flies tend toward a parallel navigation course on
final approach (1–6) is consistent with the hypothesis that they, too,
use PN (3, 4, 6). Besides responding effectively to moving targets,
PN can be used to steer an energetically optimal approach to a
stationary target, correcting simultaneously for steering error and
wind drift. It follows that PN could underpin a far wider range of
visually guided flight behaviors than the attack behaviors considered
here. This hypothesis is mechanistically appealing, because PN does
not require any information on target speed or range, merely re-
quiring an estimate of the line-of-sight rate. How this estimate is
obtained will depend on the gaze stabilization strategy of the animal:
If the head/eyes track the target, then the line-of-sight rate can be
obtained from their rotation in an inertial frame; conversely, if the
head/eyes are stabilized inertially, then the line-of-sight rate can be
obtained from the drift of the target’s image across the retina. It
remains an open question how peregrines might mechanize PN, but,
as the head of a bird plays a role analogous to the gimbaled seeker
of a guided missile, with visual and inertial sensors providing the
sensory input to both, the missile literature offers useful pointers for
future research. Conversely, our results from peregrines point to the
fact that PN guidance optimized for low flight speeds could find use
in small visually guided drones designed to remove other drones
from protected airspace.

Materials and Methods
Experimental Protocol. Each of the n = 8 peregrines carried a GPS receiver
logging position and groundspeed at 5 Hz (BT-Q1300; Qstarz International) and

a forward-facing camera recording 1,280 × 720-pixel video at 30 fps (HD808;
Hetai Digital Technology). The camera was worn dorsally on a falconry harness
(TrackPack; Marshall Radio Telemetry), while the GPS was mounted on the
camera, carried on a tail mount, or worn on the leg jesses. The equipment
weighed 0.031 kg in total (<5% body mass). Against stationary targets, the bird
was released and allowed to gain height before being called to a food lure
thrown upward by the falconer (SI Appendix, Fig. S4A and Movie S1). Against
maneuvering targets (SI Appendix, Fig. S4B and Movies S2 and S3), the bird was
usually allowed to gain height before the aircraft towing the lure was
launched, but was sometimes released after the aircraft was airborne. The pilot
was instructed to maneuver the aircraft to cause the lure to swing un-
predictably. For safety, the lure was released on a parachute upon capture. The
protocol was reviewed and approved by the US Air Force, Surgeon General’s
Human and Animal Research Panel, and the Animal Welfare and Ethical Review
Board of the University of Oxford’s Department of Zoology.

Data Processing. We screened the GPS data for accuracy and precision (SI Ap-
pendix), and, after discarding data contaminated by electromagnetic in-
terference from the video camera in one unfortunate mounting configuration,
we were left with high-quality GPS data from 23 flights against stationary
targets (n = 3 birds; 33 passes) and 22 flights against maneuvering targets (n =
4 birds; 22 passes). We synchronized the video and GPS data by identifying the
start and end of the flight in each data stream and used the video to identify
the point of intercept, having interpolated a small number of dropped GPS
data points identified by examining their time code. As the thrown targets
moved only a short distance horizontally, we identified their position from the
GPS coordinates of the bird at the moment it reached its target in the video. For
the towed targets, we used another GPS unit attached to the lure to identify
the target’s trajectory. We then shifted the target’s trajectory to align the co-
ordinates of the target and the bird at the known point of intercept, so as to
remove any discrepancies arising from inaccuracy in the GPS position estimates.
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